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Abstract – The present work focuses the economical analysis and optimization of a double stage cooling 
cycle assisted by solar energy. The first stage is performed by a mechanical compression system with 
R134a as the working fluid while the second stage is performed by a jet nozzle cooling cycle with R114 
as the working fluid. The φ−f chart method is used as a tool to optimize solar collector area by 
maximizing the lifetime cost savings (LCS). The condition of optimization for both, the flat plate 
collector area and the intercooler temperature are set down, for given specific costs of the auxiliary 
energy and electric energy, the capital cost of the collectors, the jet nozzle cooler, and the capital cost of 
equivalent mechanical compression cooler. A second law analysis is also carried out in order to obtain the 
optimum condition for a given irreversibility, or exergetic efficiency of the cycle. The approach presented 
here might be useful to determine the condition under which, a double stage solar assisted cooling cycle 
can be economically competitive with a single stage mechanical compression cooling cycle, for fixed 
condenser and evaporator temperatures. It can also be used to determine the optimum intercooler 
temperature in a double stage cooling cycle, for given energy costs and capital costs. 
 

 
1. INTRODUCTION 
 

The increasing cost of the electricity generation and the 
increasing environmental restrictions against the fossil 
fuelled energy systems has given rise to the investigation 
of more environmentally friendly systems. Among these 
systems, thermally driven cooling systems assisted by 
solar energy, have proven to be in many respects 
economically attractive. These systems can either be 
driven by photovoltaic through mechanical compression 
cycles, or by thermal solar collector through absorption or 
ejector cycles. The coefficient of performance (COP) of a 
thermally driven cycle (TDC) is much smaller than the 
COP of mechanically driven cycles (MDC), for the same 
sink temperatures. Therefore, the cost of the driving 
energy of TDC has to be lower than the cost of the work 
to drive MDC, in order to reach competitiveness with 
respect to the MDC.  

Cooling systems based on concentrating solar collectors 
with lithium-bromide absorption cycle are currently 
provided by many manufacturers. Flat plate collectors are 
shown to be advantageous as a mean of providing heat to 
these cycles, in the case of a high utilizability as reported 
in (Klein and Beckman, 1979), for Albuquerque - New 
Mexico. It has been shown in (Colle and Vidal, 2001) 
that flat plate collectors are economically attractive for 
lithium-bromide absorption cooling, with costs that are 
competitive with mechanically driven systems. The 

technology of ejector cooling cycles is presently being 
improved and investigated by many authors (Cizungu et 
al., 1999); (Huang et al., 1999); (Sun, 1997); (Sokolov 
and Hershgal, 1993); (Medina and Colle, 2001). The 
COP of ejector cycles are usually smaller than the COP 
of absorption cycles. On the other hand, the construction 
of the ejector system itself is simpler and less expensive 
in comparison to the absorption system. Ejectors perform 
well with many environmentally friendly working fluids 
as reported in (Huang et al., 1999).   

Ejector cycles can be optimised with respect to the fluid 
flow ratio, the boiler temperature, and the solar collector 
area, as shown in (Sokolov and Hershgal, 1991). The 
optimization reported in (Sokolov and Hershgal, 1991) is 
carried out for a fixed value of the solar radiation incident 
on the tilted solar collector. However solar radiation and 
ambient temperature vary considerably from place to 
place and therefore these variability should be taken into 
account in optimization. The φ−f chart method 
presented in (Klein and Beckman, 1979) was proposed to 
design solar heating and absorption cooling systems. The 
method is based on the concept of utilizability and 
therefore takes into account climatic factors variability. 
The φ−f chart method can be used straightforwardly as 
a tool to optimize solar collector area by maximizing the 
lifetime cost savings (LCS). This method was used in 
(Colle and Vidal, 2001) to optimize the collector area of a 



solar assisted lithium-bromide absorption cycle. The 
results are compared with the case of an ejector cycle. 
Upper bounds for optimum feasible ranging parameters 
were also determined, as a function of the auxiliary 
energy cost and the electric energy cost.  

The COP of the ejector cycle strongly decreases as the 
evaporator temperature decreases and therefore ejectors 
are less efficient for processes that require too low 
evaporator temperatures, as is the case of refrigeration 
applications. The COP of any cooling cycle decreases 
with the difference between of the temperatures of the 
two heat reservoirs. Low COP can be avoided and higher 
temperature difference can be achieved by a double stage 
cycle. 

The present paper presents the economical evaluation 
and optimization of a double stage cooling cycle assisted 
by solar energy. The first stage is performed by a MDC 
operating between the evaporator and the intercooler 
while the second stage is performed by a TDC, which in 
the present case is an ejector cycle. The TDC operates 
between the intercooler and the condenser. The working 
fluid of the MDC is R134a while the working fluid of the 
TDC is R114. Flat plate collectors and an auxiliary 
burner provide heat to the TDC. The economical 
optimization is carried out with respect to the intercooler 
temperature and the solar collector area. The φ−f chart 
method is used here, to correlate both, the solar collector 
parameters and the monthly means of the solar radiation 
incident on the tilted panels, with the fraction of solar 
energy. A previous version of this work is reported in a 
paper included in the proceedings of (Colle et al, 2002).  
In the mentioned paper, only the results corresponding to 
the Carnot cycle limit were presented. In the present 
paper, the analysis is carried out for a real ejector cycle 
and an ideal mechanical driven refrigeration cycle. 
 
2. ECONOMICAL EVALUATION AND 
OPTIMIZATION 
 

The double stage cycle under analysis is shown 
schematically in Fig.1. The energy collected by the solar 
collector is transferred to the TDC by means of a heat 
exchanger. Auxiliary heat is supplied to the heat 
exchanger whenever the solar heating system is unable to 
supply this heat at some minimum temperature Tmin.  For 
the particular case of the ejector cycle, all heat supplied at 
temperatures higher than the condenser temperature Tc is 
useful.  Therefore, the minimum temperature above 
which the utilizability of the solar collector is positive can 
be made equal to the condenser temperature Tc.  

The COP of the TDC is defined by 
 
 geth QQCOP /=  (1)

 
while the COP of the MDC is defined as  
 

 mrm WQCOP /=  (2)
 

 
 

Figure 1. Schematics of the double stage cooling cycle. 
 
 
where Wm > 0 is the mechanical work input to the cycle. 

 
 Since mre WQQ += , by equation (2) 
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( )mmth COPCOPCOPCOP += 1/  (3)

The lifetime cost saving function for the double stage 
cooling system shown in Fig. 1 is proved to be given by, 
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(4)

 
The first term of the above equation is the present value 

of the difference between the operational cost of an MDC 
equivalent with a given COPel, and the operation cost due 
to the first stage MDC. Here, P1 is the present worth 
factor PWF (iF, id, Ne) described in the P1 - P2 method 
(Brandemuehl and Beckman, 1979); (Duffie and 
Beckman, 1991), Ne is the time period (in years) of the 
economical analysis, iF, and id are the inflation and the 
discount rate of the fuel cost, respectively, and CE1 is the 
electric energy cost (US$ / GJ). The second term is the 
present value of the cost of the auxiliary heating of the 
TDC with specific cost CF1 (US$ / GJ). The third term 
gives the capital cost due to the collector area. 

The last term gives the difference among the capital 
cost, CEL, of an equivalent MDC with COPel, the capital 
cost of the first stage MDC, CM, with COPm , the capital 
cost of the TDC, CTH, and the cost independent of the 
collectors area, CE. P2 is an economical factor that takes 
into an account the cost of the investments, insurance, 
collector resale value and state and federal taxes, as 
described in (Brandemuehl and Beckman, 1979). CA is 
the collector cost per unit area (US$ / m2) and f is the 
annual fraction of the solar energy as given in (Klein and 
Beckman, 1979). The annual solar fraction is expressed 
in terms of the monthly heat input Qgi and the annual heat 
input Qg as follows 
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By replacing 

igQ  and Qg in terms of 
ir

Q and Qr , 
respectively, as expressed by equation (1) it follows 
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According to (Klein and Beckman, 1979), the solar 

fraction fi is expressed by the following correlations, 
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In the present analysis the parameters Xi and Yi are 

modified in terms of COP as follows  
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iriLRCi QCOPtUFAX /100)( ∆=  (9)

 
where ∆ti = 86400 Ni, Ni is the number of days of month 

(i); FRUL and FR(τα)n are the collector efficiency 
coefficients, 

iTH  is the monthly average of the solar 
radiation incident on the tilted collector plate, and RS is 
the correction factor due to the ratio of the reservoir 
volume to the collector area, which is  assumed here to be 
equal to the unity. The monthly fraction fi as well as its 
derivatives with respect to Ac and Te are evaluated 
implicitly from equation (7). 
 

)( min,max, ici Xφφ =  (10)
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where a, b, and c are functions of the average clearness 
index TK  for each month (i) as given in (Klein and 
Beckman, 1979) and (Duffie and Beckman, 1991). 
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Equation (4) can alternatively be expressed as follows 
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where ℓ = LCS / P2 CA Qr , αE = P1 CE1 / P2 CA , αF = P1 

CF1 / P2 CA , d = (CEL - CM - CTH - CE) / Qr , and ac = Ac / 
Qr . 

By assuming only the case for which ℓ ≥ 0, from  
equation (13) it follows 
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The above inequality shows that the specific area ac is 

bounded by some maximum specific area amax defined as  
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Taking the partial derivative of ℓ given by equation (13) 
with respect to ac to vanish it follows,  

c
F a

fCOP
∂
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(16)

 
For the bound-case corresponding to ℓ = 0 equation (13) 

can be written as  
 

( ) COPfaa Fc /1max −=− α  (17)
 
Replacing αF from equation (16) into equation (17) it 

leads to 
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For each specified value of amax and a given temperature 

Te, equation (18) can be solved in terms of ac, and 
therefore the loci corresponding to ℓ = 0 and 0/ =∂∂ cal  
can be plotted as a function of the parameters αF and amax 
, for a  fixed value of d. Alternatively, for each fixed 
value of αF and Te, the area ratio ac can be evaluated from 
equation (16). Replacing ac into equation (18), amax can 
be found and thus αE can be obtained from equation (15), 
once d is given. Therefore for each values of αF and d, a 
value of αE can be found from the curve for which ℓ = 0. 
Typical curves of ℓ = 0 are plotted in Fig. 3, while Fig. 2 
illustrates a solution for ac, for given values of Te, d, and 
ℓ = 0. 
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Figure 2.  Optimum solution for ac, for Te = 15 °C,  and 

ℓ = 0, where ( )
c

c a
faah
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−= max , for the same case 

corresponding to Fig. 3. 
 
 
Equation (4) can be rewritten as  
 

AcelE CdaCOP +−−= ψα /l  (19)

 
where ψ is given by 
 

( ) COPfCOP FmE /1/ −+= ααψ  (20)
 
Taking the partial derivative of ℓ with respect to Te in 

equation (19) it leads to  
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By making the derivative given above to vanish, the 

optimum value for Te can thus be found. On the other 
hand, αE can be expressed as a function of αF as follows 
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If αF given by equation (16) is replaced in the above 

equation in favor of ac, αE can than be expressed as a 
function of ac and Te . Therefore the curve along with the 

eT∂∂ /ψ vanishes, can be plotted in the coordinates αF 
and αE, as a function of ac, for constant values of Te. 

Fig. 3 illustrates the particular case corresponding to Te 
= 15 °C.    
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Figure 3. Curves of ℓ = 0, for d/CA= 0, Tr = 5 °C, Te = 15 

°C, Tc = 40 °C, and Tg = 80 °C. 



 
2.1 Coeficient of performance 

The coefficient of performance for the ideal MDC, for 
the working fluid R134a used in (Sun, 1997) is fitted by 
the following correlation, 
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where yo = 7.6712, A1 = 222.748, A2 = 149260.8, t1 = 
6.16277,  t2 = 0.89368, for Tr = 5 °C and Te ranging in the 
interval of 5 °C to 40 °C.  The COPm for R134a is nearly 
the same for R114, for the same temperature range 
considered. 

The COP of the TDC for the working fluid R114, is 
fitted by the following correlation, 
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where θ = Tg /100, Ao = 0.02563, A 1 = -1.119, A2 = 1.699, 
A3 = -0.72, Bo = -0.4026, B1 = 2.107, B2 = -2.195, B3 = 
0.8017, Co = 0.0479, C1 = 0.2346, C2 = -0.182, C3 = 
0.04833, for Te ranging in the interval of -10 °C to 40 °C 
and Tg ranging in the interval of 60 °C to 110 °C.  The 
above correlation is fitted against the data of a full 
calculation of the jet nozzle cycle, by using the 
calculations routines proposed by (Sokolov, 1993) and 
(Huang, 1999).  

 
The value of ψ  at Te = Tr is shown to be given by 
 

( ) ( )gcrthrFr TTTCOPfT ,,/1)( −= αψ  (25)
 
where fr is the value of f evaluated at Te = Tr. The value 

of ψ  at Te = Tc is given by 
 

( )( ) ( )( )ccEc ThhhThT 3112 /)( −−= αψ  (26)
 
where h is the enthalpy of the working fluid according 

to Fig. 4.  
 

 
Figure 4.  Temperature-entropy diagram for the ideal           

MDC 
 
Let us define λc = αE / αF and the parameter λr as  
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Three cases arise from equations (25),(26), and (27) as 

follows, 
 
Case (i): In this case  
λc = λr 
which leads to ψ (Tr) = ψ (Tc),  
Case (ii): λc < λr, which leads to  ψ (Tr ) > ψ (Tc) and 
Case (iii): λc > λr , which leads to ψ (Tr ) < ψ (Tc). 
 
Fig. 5 illustrates the shape of the function ψ  for 

different values of the intercooler temperature. The curve 
corresponding to the Carnot cycle limit is also shown. 
This figure shows that the optimum temperature Te is 
strongly dependent on the coefficient of performance of 
the TDC, for fixed value of the ratio of the electric to the 
fuel gas cost, λc.  

 
3. SECOND LAW ANALYSIS 
 

The optimization carried out in the previous sections is 
performed regardless to the second law of 
thermodynamics. However in many circumstances, the 
relationship between economical figures of merit and the 
thermodynamic efficiency of the components of the 
system may be of practical interest.  

 
The entropy generation of the whole cycle shown in 

Fig.1 is expressed as follows 
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Figure 5. Typical plots of the cost function ψ (Te) for   

αE  = 5.675, αF  = 3.03 (λc = 1.873).  
 
where 
 

mgrc WQQQ ++=  (29)
 
From equations (2) and (3), and equation (29), equation 

(29) can be expressed as follows 
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From the definition of irreversibility, referred to some 

thermodynamic environment at temperature To it follows, 
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The exergetic efficiency of the whole cycle is defined as  
 

( )mQinex WEI +−= ∑/1η  (32)

 
where EQin is the exergy of the heat input (Kotas, 1995). 

The denominator of the above equation can be expressed 
as follows  
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Fig. 6 illustrates the shape of φ and ηex for the particular 

cases corresponding to figures 3 and 5.  This figure 
shows a possibility of existing optimum values for the 
exergetic efficiency as a function of Te .  
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Figure 6.  Irreversibility ( φ ) and exergetic efficiency     

( ηex ) for Ac = 40 m2 
 

3.1  Constrained optimization  
 
The irreversibility given by equation (31) is a function 

of the intercooler temperature Te. For each specified 
value of I, a value for Te can be found by solving 
equation (31) in terms of Te.  

The constrained optimum for ℓ in terms of ac and Te can 
be determined by the method of Lagrange multipliers as 
follows. 

Let the auxiliary function L defined by 
 
L  = ( )oφφλ −+ ll  (34)

 
where φ = I / Qr and φo = Io / Qr, for a given value of Io .  
By taking the partial derivative of equation (34) with 
respect to ac to vanish, equation (16) is found, while 
equation (18) holds for the special case of ℓ = 0. 

By taking the partial derivative of L with respect to Te to 
vanish, the following equation holds, 
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or in terms of ψ it follows 
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Since ηex = 1 - φ / ζ , for each value of ηex , Te can be 

obtained from equations (31), (32), and (33). With Te thus 
found, ac can be found from equations (16) or (18), as the 
case might be. With the values of ac and Te thus found, 
the Lagrange multiplier λℓ is found from equation (37) as 
follows,  
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The derivative of φ with respect to Te is given by 
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Curves for constant value of ℓ can be plotted as a 

function of ac and ηex (or Te). 
The loci of a curve of ℓ = 0 can also be plotted as a 

function of αF and αE, for fixed values of ηex.  
Once the Lagrange multiplier λℓ is found from equation 

(37), for each value of ηex, the sensibility coefficient of 
optimum ℓ with respect to either φo or ηex can be found by 
the following  
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4. CONCLUSIONS 
 
The present paper reports a basic economical analysis of 

a double stage enhanced cooling cycle assisted by solar 
energy. The approach presented here may be useful to 
determine the condition under which, a double stage solar 
assisted cooling cycle can be economically competitive 
with a single stage mechanical compression cooling 
cycles, for fixed condenser and evaporator temperatures.  

The life cost savings technique, i.e., the P1 - P2 method 
of (Klein and Beckman, 1979) was used to set down the 
objective function for the economical analysis. The 
second law analysis was performed in order to relate the 
life cost savings to the exergetic efficiency of the whole 
cycle. The analysis presented here is appropriate to make 
a straightforward calculation in order to determine also 
the bounds for the economical feasibility region, in terms 
of the electric energy cost, the auxiliary energy cost, and 

the difference among the capital costs considered. The 
design method φ−f  chart is shown here to be a 
convenient tool to determine, prior to any full simulation, 
the conditions under which a thermally driven cycle can 
be economically more attractive than a mechanically 
driven cycle. It can also be used to determine the 
optimum intercooler temperature, for the case of 
conjugation of the MDC and the TDC in a double stage 
cooling cycle, for given energy costs and capital costs. It 
is also shown that the ratio of the electricity to the 
auxiliary heat cost is a meaningful parameter, which can 
be used to determine the conditions under which 
optimum solutions exist.  The numerical example 
presented here shows that the optimum solution derived 
from the life cycle cost savings function does not 
correspond to the optimum solution derived from the 
function of the exergetic efficiency.  This is expected, 
since an optimum economical design of a thermal system, 
is in general not equivalent to an optimum 
thermodynamic design, as is pointed out in (Kotas, 1995). 
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